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ABSTRACT

Suppose that X is a Polish space and E is a countable Borel equivalence

relation on X. We show that if there is a Borel assignment of means to

the equivalence classes of E, then E is smooth. We also show that if there

is a Baire measurable assignment of means to the equivalence classes of

E, then E is generically smooth.

1. Introduction

A mean on a countable set S is a positive linear functional ϕ : ℓ∞(S) → C such

that ϕ(1) = 1, where 1 denotes the constant function on S with value 1. Means

provide a way of associating an average value with each element of ℓ∞(S).

Suppose that X is a Polish space and E is a countable Borel equivalence

relation on X . An assignment of means is a map which associates with each

equivalence class [x]E a mean ϕ[x]E on [x]E . Assignments of means provide a
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way of associating an assignment of average values x 7→ ϕ[x]E(fx) with each

assignment of functions x 7→ fx ∈ ℓ∞([x]E).

An assignment of functions x 7→ fx ∈ ℓ∞([x]E) is Borel if the corresponding

function f : E → C, given by f(x, y) = fx(y), is Borel. Given a family Γ ⊆

P(X) of subsets of X , we say that a function F : X → C is Γ-measurable if

∀U ⊆ C open (F−1(U) ∈ Γ).

We say that an assignment of means [x]E 7→ ϕ[x]E is Γ-measurable if for every

Borel assignment of functions x 7→ fx ∈ ℓ∞([x]E), the corresponding assignment

of average values x 7→ ϕ[x]E (fx) is Γ-measurable.

Suppose that µ is a (Borel) probability measure on X . An equivalence rela-

tion E is µ-amenable if it admits a µ-measurable assignment of means. This

notion has played an important role in ergodic theory over the last few decades.

In Connes–Feldman–Weiss [2], it is shown that the existence of such assign-

ments is equivalent to the existence of a µ–conull Borel set B ⊆ X such that

E|B is of the form
S

n∈N
Fn, where F0 ⊆ F1 ⊆ · · · is an increasing sequence

of finite Borel equivalence relations. That is, the equivalence relation E|B is

hyperfinite. From the point of view of descriptive set theory, the hyperfinite

equivalence relations are the simplest non-trivial equivalence relations (see, for

example, Jackson–Kechris–Louveau [7]). Thus, the result of Connes–Feldman–

Weiss [2] says that µ-amenability characterizes those countable Borel equiva-

lence relations which are µ-almost everywhere no more complicated than the

simplest non-trivial sort of equivalence relation.

Kaimanovich has asked what happens to the notion of µ-amenability if the

family Γ of µ-measurable subsets of X is replaced with the family of Borel

subsets of X , and whether hyperfiniteness in the Borel context (in fact, even

whether the condition of 1-amenability as in Jackson–Kechris–Louveau [7]) im-

plies the existence of a Borel assignment of means. In light of the result of

Connes–Feldman–Weiss [2], one might think that this modified notion should

characterize hyperfiniteness. However, it turns out that this is far from the

truth. Our main goal is to describe which equivalence relations admit Borel

assignments of means, as well as which equivalence relations admit Baire mea-

surable assignments of means.

In §2, we use an argument of Adams [1] to show that if E is a meager-

preserving countable Borel equivalence relation which admits a Baire measur-

able assignment of means, then every treeing of E is of a certain form. In §3,
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we introduce the object which lies at the heart of our argument — the generic

n-regular treeing of an aperiodic countable Borel equivalence relation. In §4, we

show that if E is a meager-preserving, generically non-smooth countable Borel

equivalence relation, then the generic 3-regular treeing of E from §3 is not of

the form described in §2.

In §5, we obtain our main results. We say that E is smooth if there is a Borel

set B ⊆ X which contains exactly one point of every E-class, E is generically

smooth if there is a comeager Borel set C ⊆ X such that E|C is smooth, and

E is generically non-smooth if for every non-meager Borel set B ⊆ X , the

equivalence relation E|B is not smooth.

Theorem: Suppose that X is a Polish space and E is a countable Borel equiv-

alence relation on X . Then the following are equivalent:

1. E is generically smooth.

2. E admits a Baire measurable assignment of means.

Coupled with the Glimm–Effros dichotomy, this yields the following:

Theorem: Suppose that X is a Polish space and E is a countable Borel equiv-

alence relation on X . Then the following are equivalent:

1. E is smooth.

2. E admits a Borel assignment of means.

We also note that strong set-theoretic assumptions can be employed to obtain

similar results when the family Γ of Borel subsets of X is substantially enlarged.

2. Adams’s argument

In this section, we use the argument of Adams [1] to show that every treeing of

a meager-preserving countable Borel equivalence relation which admits a Baire

measurable assignment of means must be of a certain form.

Suppose that X is a Polish space and E is a countable Borel equivalence

relation on X . The E-saturation of a Borel set B ⊆ X is given by

[B]E = {x ∈ X : ∃y ∈ B (xEy)}.

We say that E is meager-preserving if the E-saturations of meager sets are

meager. (Such equivalence relations are sometimes called generic — we reserve

this term, however, to refer only to properties which occur comeagerly often.)
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A set B ⊆ X is an E-complete section if X = [B]E , and E-invariant if

B = [B]E .

A forest is a graph whose connected components are trees. A treeing of

E is a Borel forest T ⊆ E whose connected components coincide with the

equivalence classes of E. A function f : X → X is aperiodic if

∀x ∈ X ∀n > 0 (x 6= fn(x)).

Associated with every such function is an induced forest, given by

Tf = {(x, y) ∈ X ×X : f(x) = y or f(y) = x}.

We say that a Borel forest T on X is directable if it is of the form Tf , for

some aperiodic Borel function f : X → X . A set B ⊆ X is T -convex if the

vertex set of every T -path which begins and ends in B is contained in B. Such

a set is T -linear if each point of B has at most two T -neighbors within B.

Proposition 2.1 (essentially Adams): Suppose that X is a Polish space, E is

a meager-preserving countable Borel equivalence relation on X which admits a

Baire measurable assignment of means, and T is a locally finite treeing of E.

Then there are disjoint E-invariant Borel sets A1, A2 ⊆ X such that:

1. A1 ∪A2 is comeager.

2. T |A1 is directable.

3. E|A2 admits a T -linear Borel complete section.

Proof. We say that an assignment of sets x 7→ Sx ⊆ [x]E is Borel if the

corresponding set S = {(x, y) ∈ X × X : y ∈ Sx} is Borel. Given a family

Γ ⊆ P(X), we say that an assignment of finitely additive probability measures

[x]E 7→ µ[x]E is Γ-measurable if for every Borel assignment of sets x 7→ Sx ⊆

[x]E , the corresponding assignment x 7→ µ[x]E(Sx) is Γ-measurable.

It is clear that every Γ-measurable assignment of means gives rise to a Γ-

measurable assignment of finitely additive probability measures. For our pur-

poses, it will be more convenient to work with the latter, so fix a Baire measur-

able assignment of finitely additive probability measures [x]E 7→ µ[x]E .

For each x ∈ X , let Tx̂ denote the forest obtained from T |[x]E by delet-

ing all edges of the form (y, z), where x ∈ {y, z}. Let Ex̂ be the equiv-

alence relation on [x]E whose equivalence classes are the connected compo-

nents of Tx̂. By Feldman–Moore [3], there is a countable group Γ of Borel
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automorphisms such that E = EX
Γ , where EX

Γ is the orbit equivalence rela-

tion associated with Γ,

xEX
Γ y ⇔ ∃γ ∈ Γ (γ · x = y).

For each γ ∈ Γ, define Fγ : X → [0, 1] by

Fγ(x) = µ[x]E([γ · x]Ex̂
).

As the assignment x 7→ [γ ·x]Ex̂
is Borel, it follows that Fγ is Baire measurable.

Lemma 2.2: There is a comeager E-invariant Borel set C ⊆ X such that

∀γ ∈ Γ (Fγ |C is Borel).

Proof. For each γ ∈ Γ, fix a comeager Borel set Cγ ⊆ X on which Fγ |Cγ is

Borel. As E is meager-preserving, it follows that the E-invariant Borel set

C = X \
[
γ∈Γ

[X \ Cγ ]E

is also comeager. As C ⊆
T

γ∈ΓCγ , it follows that each Fγ |C is Borel.

By replacing X with the set C ⊆ X of Lemma 2.2, we may assume that each

of the functions Fγ is Borel.

A partial transversal of E is a set B ⊆ X which intersects every equivalence

class of E in at most one point. A transversal is a partial transversal which is

also an E-complete section, and E is smooth if it admits a Borel transversal.

Lemma 2.3: The restriction of E to the set

A =
�
x ∈ X : ∃y ∈ [x]E

�
µ[x]E ({y}) > 0

�©
is smooth.

Proof. Define B ⊆ A by

B =
�
x ∈ A : ∀y ∈ [x]E

�
µ[x]E ({y}) ≤ µ[x]E({x})

�©
.

It is clear that B intersects each equivalence class of E|A in a non-empty, finite

set. Fix a Borel linear ordering ≤ of X , set

C = {x ∈ B : ∀y ∈ B ∩ [x]E (y ≤ x)},

and observe that C is a Borel transversal of E|A, thus E|A is smooth.
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As partial transversals constitute the simplest examples of T -linear sets, we

may therefore assume that ∀x ∈ X (µ[x]E({x}) = 0). Define R ⊆ T by

R =
�
(x, y) ∈ T : ∀z ∈ [x]E

�
µ[x]E([z]Ex̂

) ≤ µ[x]E([y]Ex̂
)
�©
,

and note that R is Borel, since

R =
[
γ∈Γ

�
(x, γ · x) ∈ T : ∀δ ∈ Γ

�
Fδ(x) ≤ Fγ(x)

�©
.

[u]Ex̂
r

y

r ··· r

u

r

x
H

H
H

�
�

�

r
w

r
v

[v]Ex̂

[w]Ex̂

[x]Eŷ

Figure 1. If |Rx| ≥ 3 and y 6= x, then |Ry| = 1.

Lemma 2.4: The set {x ∈ X : |Rx| ≥ 3} is a partial transversal of E.

Proof. It is enough to show that if |Rx| ≥ 3, then

∀y ∈ [x]E (x 6= y ⇒ |Ry| = 1).

Fix y ∈ [x]E with x 6= y, and find distinct points u, v, w ∈ Tx such that

y ∈ [u]Ex̂
and v, w ∈ Rx (see Figure 1). Then [v]Ex̂

∪ [w]Ex̂
⊆ [x]Eŷ

and every

other equivalence class of Eŷ is contained in [u]Ex̂
. As

µ[x]E ([u]Ex̂
) < µ[x]E([v]Ex̂

) + µ[x]E ([w]Ex̂
),

it follows that [x]Eŷ
is the unique Eŷ-class of maximal measure, so |Ry|=1.

Again, appealing to the fact that partial transversals are T -linear sets, we

may now assume that ∀x ∈ X (|Rx| ≤ 2).

Lemma 2.5: The set A2 = {x ∈ X : |Rx| = 2} is T -linear.

Proof. It is enough to show that A2 is T -convex. The main point is as follows:
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[x]Eŷ
[w]Ex̂
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r ··· r r
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[z]Eŷ
[y]Ex̂

Figure 2. If [x]Eŷ
is not of maximal µ[x]E -measure, then |Rx| = 1.

Sublemma 2.6: Suppose that y ∈ [x]E \ {x} and there exists z ∈ [x]E such

that

µ[x]E([z]Eŷ
) > µ[x]E([x]Eŷ

).

Then |Rx| = 1.

Proof. Suppose that w is a T -neighbour of x which is not Tx̂-connected to y.

Now, observe that [w]Ex̂
⊆ [x]Eŷ

and [z]Eŷ
⊆ [y]Ex̂

(see Figure 2), thus

µ[x]E([y]Ex̂
) ≥ µ[x]E ([z]Eŷ

)

> µ[x]E ([x]Eŷ
)

≥ µ[x]E ([w]Ex̂
),

so [y]Ex̂
is the unique Ex̂-class of maximal measure, hence |Rx| = 1.

To see that A2 is T -convex, suppose x, z ∈ A2 and y ∈ X lies along the

T -path from x to z. By Sublemma 2.6, both x and z lie in an equivalence class

of Eŷ of maximal measure. It follows that |Ry| = 2, thus y ∈ A2.

Thus, we may assume that ∀x ∈ X (|Rx| = 1). Let f be the Borel function

which associates with each point x ∈ X the unique element of Rx.

Lemma 2.7: The restriction of E to {x ∈ X : ∃y ∈ [x]E (f2(y) = y)} is smooth.

Proof. It is enough to show that the set

A = {x ∈ X : f2(x) = x}

intersects each equivalence class of E in at most two points. Fix x ∈ A. We will

show that for every y ∈ [x]E which lies outside of the set {x, f(x)}, there exists
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r

y

r ··· r

x

r

f(x)

[f(x)]Ex̂
[x]Ey

Figure 3. If y 6∈ {x, f(x)}, then dT (f(y), {x, f(x)}) < dT (y, {x, f(x)}).

n ∈ N such that fn(y) ∈ {x, f(x)}. Letting dT denote the graph metric, it is

enough to show that for each y ∈ [x]E which lies outside of the set {x, f(x)},

dT (f(y), {x, f(x)}) < dT (y, {x, f(x)}).

That is, we must show that [x]Eŷ
is of maximal measure. By reversing the roles

of x, f(x) if necessary, we may assume that the unique path from x to y avoids

f(x). It then follows that every equivalence class of Eŷ other than that of x is

contained in [y]Ex̂
and [f(x)]Ex̂

⊆ [x]Eŷ
(see Figure 3), thus [x]Eŷ

is the unique

equivalence class of Eŷ of maximal measure.

By appealing once more to the fact that partial transversals are T -linear, we

may now assume that f2(x) 6= x, for all x ∈ X . As T is a forest, it follows that

f is aperiodic. The following fact completes the proof of the proposition

[y]Ex̂
r

y

r

x

r

z

[z]Ex̂
[x]Eŷ

Figure 4. If (x, y) ∈ T and f(x) 6= y, then f(y) = x.

Lemma 2.8: T = Tf .
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Proof. Clearly Tf ⊆ T , so we must show that whenever (x, y) ∈ T , either

f(x) = y or f(y) = x. Suppose that z = f(x) is distinct from y. Then [z]Ex̂

is the unique equivalence class of Ex̂ of maximal measure, every equivalence

class of Eŷ other than that of x is contained in [y]Ex̂
, and [z]Ex̂

⊆ [x]Eŷ
(see

Figure 4). It follows that [x]Eŷ
is the unique equivalence class of Eŷ of maximal

measure, thus f(y) = x.

This proves the proposition.

Remark 2.9: As in §3 of Jackson–Kechris–Louveau [7], the assumption that T

is locally finite is unnecessary in the statement of Proposition 2.1. Although we

will have no need for this generalization, it certainly could be used to extend

the results of the upcoming sections to the generic (ℵ0-regular) treeing of E.

3. Generic treeings

An equivalence relation E is aperiodic if every equivalence class of E is infinite.

In this section, we introduce a parameterized collection of attempts at building

an n-regular treeing of an aperiodic countable Borel equivalence relation, for

n ≥ 2. We show that such a generic attempt successfully produces an n-regular

treeing of the restriction of the equivalence relation to an invariant comeager

Borel set.

Fix a natural number n ≥ 2. We say that a treeing of E is n-regular if all of

its vertices have exactly n neighbours. A finite partial n-regular treeing of

E is a Borel forest T ⊆ E whose connected components are finite and whose

vertices have at most n neighbours. (It is rare for such treeings to literally be

of finite cardinality!) The equivalence relation induced by T is given by

xET y ⇔ (x, y lie in the same connected component of T ),

and a one-step proper extension of T is a pair (x, y) ∈ E \ ET such that

both x, y are of T -vertex degree strictly less than n. We will use ΦT to denote

the standard Borel space of all such extensions of T .

A coloring of a graph G on X is a function c : X → Y such that

∀x, y ∈ X
�
(x, y) ∈ G ⇒ c(x) 6= c(y)

�
.

The Borel chromatic number of G is the cardinality of the smallest Polish

space Y for which there is a Borel coloring c : X → Y (see Kechris–Solecki–

Todorcevic [11] for a detailed study of this notion). Associated with each finite
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partial n-regular treeing T of E is the graph GT on ΦT , whose vertices are

one-step proper extensions of T and whose edges consist of pairs ((x, y), (x′, y′))

of distinct one-step proper extensions of T for which

([x]ET
∪ [y]ET

) ∩ ([x′]ET
∪ [y′]ET

) 6= ∅.

Note that if Φ ⊆ ΦT is a Borel subset of ΦT and no two elements of Φ are

GT -neighbours, then the graph obtained by adding Φ to T is again a finite

partial n-regular treeing of E.

Proposition 3.1: The graph GT has countable Borel chromatic number.

Proof. We will produce a Borel coloring c : ΦT → N<N. We use [E]<∞ to

denote the standard Borel space of all finite sets S ⊆ X such that

∀x, y ∈ S (xEy).

Associated with this space is a graph G on [E]<∞, given by

G = {(S, T ) ∈ [E]<∞ × [E]<∞ : S 6= T and S ∩ T 6= ∅}.

Lemma 3.2: The graph G has countable Borel chromatic number.

Proof. By Feldman–Moore [3], there are Borel involutions ιn : X → X such

that

E =
[
n∈N

graph(ιn).

Let ≤ be a Borel linear ordering of X , and given S ∈ [E]<∞, let x
(S)
1 , . . . , x

(S)
|S|

be the ≤-increasing enumeration of S. Define c : Φ → N<N by letting c(S) be

the unique sequence 〈kij〉1≤i,j≤|S| such that

∀1 ≤ i, j ≤ |S|
�
kij = min{k ∈ N : ιk · x

(S)
i = x

(S)
j }

�
.

Now suppose, towards contradiction, that c is not a coloring. Fix (S, T ) ∈ G

such that c(S) = c(T ), put n = |S| = |T |, and fix i, j < n such that

x
(S)
i = x

(T )
j .
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Then

i < j ⇔ x
(S)
i <X x

(S)
j

⇔ x
(S)
i <X ιkij

(x
(S)
i )

⇔ x
(T )
j <X ιkij

(x
(T )
j )

⇔ x
(T )
j <X x

(T )
i

⇔ j < i,

thus i = j, so x
(S)
i = x

(T )
i . It follows that for all m < n,

x(S)
m = ιkim

(x
(S)
i ) = ιkim

(x
(T )
i ) = x(T )

m ,

thus S = T , which contradicts our assumption that (S, T ) ∈ G .

Fix a Borel coloring c0 : [E]<∞ → N of G , fix a Borel linear ordering ≤ of X ,

and define c1 : X ×X → N × N by

c1(x, y) = (i, j),

where x is the ith element of the ≤-increasing enumeration of [x]ET
∪ [y]ET

,

and y is the jth element of the ≤-increasing enumeration of [x]ET
∪ [y]ET

. Now

define

c(x, y) =
�
c0([x]ET

∪ [y]ET
), c1(x, y)

�
,

and suppose, towards a contradiction, that there exists ((x, y), (x′, y′)) ∈ GT

such that c(x, y) = c(x′, y′). As c0([x]ET
∪ [y]ET

) = c0([x
′]ET

∪ [y′]ET
), it

follows that

[x]ET
∪ [y]ET

= [x′]ET
∪ [y′]ET

.

As c1(x, y) = c1(x
′, y′), it follows that (x, y) = (x′, y′), a contradiction.

Next, we define a family of finite partial n-regular treeings Ts of E, for

s ∈ N<N. We begin by putting T∅ = ∅. Given Ts, set Es = ETs
, Φs = ΦTs

,

and Gs = GTs
, and fix a Borel coloring cs : Φs → N of Gs. Then, for each k ∈ N,

set

Ts⌢k = Ts ∪ {(x, y) ∈ Φs : cs(x, y) = k or cs(y, x) = k}.

(Here we use s⌢k to denote the concatenation of s with the singleton sequence

〈k〉.) Note that Ts⌢k is a partial n-regular treeing of E whose connected compo-

nents each consist of at most two connected components of Ts, and are therefore
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finite. Once the recursion is complete, we associate with each α ∈ NN the forest

Tα =
[
n∈N

Tα|n,

as well as the associated equivalence relation Eα = ETα
, and the set

Cα = {x ∈ X : Tα|[x]E is an n-regular tree}.

Proposition 3.3: Suppose that X is a Polish space and E is an aperiodic

countable Borel equivalence relation on X . Then for comeagerly many α ∈ NN,

the set Cα is comeager.

Proof. By Feldman–Moore [3], there is a countable group Γ of Borel automor-

phisms of X such that E = EX
Γ . We must show that

∀∗α ∈ NN ∀∗x ∈ X (Tα|[x]E is an n-regular tree).

By the theorem of Kuratowski–Ulam (see, for example, §8 of Kechris [9]), it is

enough to show that for all x ∈ X ,

∀∗α ∈ NN (Tα|[x]E is an n-regular tree).

It is therefore sufficient to verify the following two lemmas:

Lemma 3.4: ∀∗α ∈ NN (Tα|[x]E is connected).

Proof. It is enough to show that for all γ, δ ∈ Γ and s ∈ 2<N, there exists

t ⊇ s such that γ · xEtδ · x, as this implies that the set of α ∈ NN for which

γ ·xEαδ ·x contains a dense open set, thus the set of α ∈ N<N for which Tα|[x]E
is connected contains a countable intersection of dense open sets. Suppose that

(γ · x, δ · x) 6∈ Es. As the connected components of Ts are finite, there exists

y ∈ [γ · x]Es
and z ∈ [δ · x]Es

which are of Ts-vertex degree strictly less than

n. It follows that the pair (y, z) is a one-step proper extension of Ts, thus,

there exists k ∈ N such that yEs⌢kz, so γ · xEs⌢kδ · x. Hence, t = s⌢k is as

desired.

Lemma 3.5: ∀∗α ∈ NN (Tα|[x]E is n-regular).

Proof. It is enough to show that for all γ ∈ Γ, m ≤ n, and s ∈ 2<N, there exists

t ⊇ s such that degTt
(γ · x) ≥ m, as this implies that the set of α ∈ NN for

which degTα
(γ · x) = n, thus the set of α ∈ N<N for which Tα|[x]E is n-regular

contains a countable intersection of dense open sets. We proceed by induction

on m. Of course, the case m = 0 is trivial, so it is enough to show that if m < n
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and degTs
(γ · x) = m, then there exists t ⊇ s such that degTt

(γ · x) = m+ 1.

The aperiodicity of E coupled with the fact that the connected components of

Ts are finite ensures that there exists y ∈ [x]E \ [γ ·x]Es
such that degTs

(y) < n.

It follows that the pair (x, y) is a one-step proper extension of Ts, thus there

exists k ∈ N such that (x, y) ∈ Ts⌢k. Hence, t = s⌢k is as desired.

This ends the proof of the proposition.

Remark 3.6: For each α ∈ NN, the union of the equivalence relations

Eα0
⊆ Eα0α1

⊆ Eα0α1α2
⊆ · · ·

is Eα. It follows from Proposition 3.3 that for comeagerly many α ∈ NN, the

equivalence relation E|Cα is hyperfinite. The fact that every countable Borel

equivalence relation is generically hyperfinite was originally shown in Hjorth–

Kechris [5], there, they also extended results of Sullivan–Weiss–Wright [13] and

Woodin. See also §12 of Kechris–Miller [10].

4. Generic treeings of non-smooth equivalence relations

In this section, we show that the generic 3-regular treeing of a meager-preserving,

generically non-smooth equivalence relation does not satisfy the conclusion of

Proposition 2.1.

Recall that an equivalence relation E is generically non-smooth if for every

non-meager Borel set B ⊆ X , the equivalence relation E|B is not smooth.

Proposition 4.1: Suppose X is a Polish space and E is a meager-preserving,

generically non-smooth countable Borel equivalence relation on X . Then for

comeagerly many α ∈ NN and every E-invariant non-meager Borel set B ⊆ X ,

Tα|B is undirectable.

Proof. Fix a countable open basis B for X . By Feldman–Moore [3], there is

a countable group Γ of Borel automorphisms such that E = EX
Γ . In order to

implement a category argument similar to that used in the proof of Proposition

3.3, we must first describe the conclusion that we wish to draw in terms of

countably many conditions which depend only on B and Γ:
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Lemma 4.2: Suppose that A ⊆ X is an E-invariant non-meager Borel set and

T is a directable treeing of E|A. Then there exists U ∈ B and γ ∈ Γ such that

∀∗x ∈ U ∀x0, x1 ∈ U ∩ [x]E
�
dT (γ · x0, γ · x1) ≤ dT (x0, x1)

�
.

Proof. Fix an aperiodic Borel f : A→ A which induces T , fix γ ∈ Γ such that

B = {x ∈ A : f(x) = γ · x}

is non-meager, fix U ∈ B such that B is comeager in U , and observe that the

set

C = X \ [U \B]E

is comeager, since E is meager-preserving. As T = Tf , it follows that

∀x ∈ A∀x0, x1 ∈ [x]E
�
dTf

(f(x0), f(x1)) ≤ dTf
(x0, x1)

�
.

As U ∩ C ⊆ B ∩C ⊆ A ∩ C, the lemma follows.

It is, therefore, enough to show that for every U ∈ B and γ ∈ Γ,

∀∗α ∈ NN ∀∗x ∈ U ∃x0, x1 ∈ U ∩ [x]E
�
dTα

(γ · x0, γ · x1) > dTα
(x0, x1)

�
.

By the theorem of Kuratowski–Ulam, it is enough to show that

∀∗x ∈ U ∀∗α ∈ NN ∃x0, x1 ∈ U ∩ [x]E
�
dTα

(γ · x0, γ · x1) > dTα
(x0, x1)

�
.

Lemma 4.3: Suppose that X is a Polish space, E is a generically non-smooth

countable Borel equivalence relation on X , and A ⊆ X is Borel. Then

∀∗x ∈ X (A ∩ [x]E = ∅ or |A ∩ [x]E | = ∞).

Proof. Define B ⊆ X by

B = {x ∈ X : 0 < |A ∩ [x]E | <∞},

fix a Borel linear ordering ≤ of X , and observe that the set

C = {x ∈ A ∩B : ∀y ∈ A ∩ [x]E (x ≤ y)}

is a Borel transversal of E|B, thus B is meager, and the lemma follows.

Thus, it is enough to show that if |U ∩ [x]E | = ∞, then

∀∗α ∈ NN ∃x0, x1 ∈ U ∩ [x]E
�
dTα

(γ · x0, γ · x1) > dTα
(x0, x1)

�
.

It is, therefore, sufficient to verify the following lemma:
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Lemma 4.4: For all s ∈ N<N, there exists v ⊇ s and x0, x1 ∈ U ∩ [x]E such

that the points x0, x1, γ · x0, γ · x1 are pairwise Tv-connected, and

dTv
(γ · x0, γ · x1) > dTv

(x0, x1).

Proof. Set x0 = x, and find t ⊇ s such that x0Etγ ·x0. As |U ∩ [x]E | = ∞, there

exists x1 ∈ U ∩ [x]E which lies outside of the finite set [x0]Et
∪ γ−1([x0]Et

). In

particular, it follows that neither x1 nor γ · x1 lies in [x0]Et
, thus there is an

extension u ⊇ t such that x1Euγ · x1 but (x0, x1) 6∈ Eu (see Figure 5).

r rr r r rr rp p p p p p p p p p p p

γ·x0 x′
0

x0 y0 y1 x1 x′
1

γ·x1

[x0]Eu [x1]Eu

[x]Ev

× ×

Figure 5. Finding an extension v ⊇ s such that dTv
(γ · x0, γ ·

x1) > dTv
(x0, x1).

Let x′i be the Tu-neighbor of xi which is dTu
-closest to γ · xi, let Ti be the

forest obtained from Tu by deleting the edge (xi, x
′
i), and fix yi ∈ [xi]ETi

such

that degTu
(yi) < n. Then (y0, y1) is a one-step proper extension of Tu, thus

there exists v ⊇ u such that (y0, y1) ∈ Tv. It follows that the points x0, x1, γ ·

x0, γ · x1 are pairwise Tv-connected, and dTv
(γ · x0, γ · x1) > dTv

(x0, x1).

This ends the proof of the proposition.

Remark 4.5: The directability of Borel forests can be characterized in terms of

a Glimm–Effros style dichotomy. See Hjorth–Miller [6] for more on this.

Next, we prove a similar fact about the existence of (non-trivial) convex sets:

Proposition 4.6: Suppose X is a Polish space and E is a meager-preserving,

generically non-smooth countable Borel equivalence relation on X . Then for

comeagerly many α ∈ NN and every non-meager E-invariant Borel set B ⊆ X ,

the forest Tα|B admits no convex Borel complete, co-complete section.

Proof. Fix a countable open basis B for X . Again, we begin by describing the

conclusion that we wish to draw in terms of countably many conditions which
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depend only on B. We say that B ⊆ X is generically non-trivial if the set

[B]E ∩ [X \B]E = {x ∈ X : ∅ ( B ∩ [x]E ( [x]E}

is non-meager.

Lemma 4.7: Suppose that A ⊆ X is a non-meager E-invariant Borel set and

T is a treeing of E|A. If E|A admits a T -convex Borel complete, co-complete

section, then there is a set U ∈ B with generically non-trivial convex T -closure.

Proof. Suppose that B ⊆ X is a T -convex Borel complete, co-complete section

for E|A. Then B is non-meager, since A is non-meager and E is meager-

preserving. Fix U ∈ B such that B is comeager in U , and observe that

C = A \ [U \B]E

is comeager in U , since E is meager-preserving. As U ∩ C ⊆ B ∩ C, it follows

that the convex T -closure of U is generically non-trivial.

Thus, it is enough to show that for all U ∈ B,

∀∗α ∈ NN ∀∗x ∈ X
�
Uα ∩ [x]E = ∅ or (X \ Uα) ∩ [x]E = ∅

�
,

where Uα is the convex Tα-closure of U . By Feldman–Moore [3], there is a

countable group Γ of Borel automorphisms such that E = EX
Γ . By Lemma 4.3,

the set

A = {x ∈ U : |U ∩ [x]E | = ∞}

is comeager in U , thus by the theorem of Kuratowski–Ulam, it is enough to

show

∀x ∈ A∀γ ∈ Γ ∀∗α ∈ NN
�
γ · x ∈ Uα

�
.

Fix x ∈ A and γ ∈ Γ. It only remains to check the following

Lemma 4.8: For all s ∈ N<N, there exists u ⊇ s such that γ ·x ∈ Uu, where Uu

is the convex Tu-closure of U .

Proof. As x ∈ U , we may assume that γ · x 6= x. Fix an extension t ⊇ s

such that xETt
γ · x. Let x′ be the Tt-neighbor of γ · x which is dTt

-closest to

x, let T be the forest obtained from Tt by deleting the edge (γ · x, x′), and

find y0 ∈ [γ · x]ET
such that degTt

(y0) < n. As |U ∩ [x]E | = ∞, there exists

z ∈ U ∩ [x]E which lies outside of [x]ETt
.

Fix y1 ∈ [z]Et
such that degTt

(y1) < n (see Figure 6). As (y0, y1) is a one-

step proper extension of Tt, it follows that there is an extension u ⊇ t such that
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r r r r r re ep p p p p p p p p

x x′ γ·x y0 y1 z

[x]Et
[z]Et

[x]Eu

×

Figure 6. Finding an extension u ⊇ s such that γ · x ∈ Uu.

(y0, y1) ∈ Tu. As γ · x lies along the unique injective Tu-path from x to z, it

follows that γ · x is in the convex Tu-closure of U .

This ends the proof of the proposition.

Remark 4.9: The existence of T -linear Borel complete, co-complete sections

can be characterized in terms of a Glimm–Effros style dichotomy. See Miller–

Rosendal [12] for more on this.

5. Assignments of means

In this section, we finally prove our main results on assignments of means.

Recall that an equivalence relation E is generically smooth if there is a

comeager Borel set C ⊆ X such that E|C is smooth.

Theorem 5.1: Suppose that X is a Polish space and E is a countable Borel

equivalence relation on X . Then the following are equivalent:

1. E is generically smooth.

2. There is a comeager E-invariant Borel set C ⊆ X on which E|C admits

a Borel assignment of means.

3. E admits a Baire measurable assignment of means.

Proof. To see (1) ⇒ (2), fix a comeager E-invariant Borel set C ⊆ X on which

E|C is smooth, let B ⊆ C be a Borel transversal of E|C, and let s : C → C be

the (Borel) function which associates with each point x ∈ C the unique element

of B ∩ [x]E . The map which assigns to each equivalence class [x]E the mean

ϕ[x]E(f) = f ◦ s(x)

gives the desired result.
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To see (2) ⇒ (3), suppose [x]E|C 7→ ϕ[x]E|C
is a Borel assignment of means.

By AC, this can be extended to an assignment of means [x]E 7→ ψ[x]E . For

every Borel assignment of functions x 7→ fx ∈ ℓ∞([x]E) and open U ⊆ C, the

sets

{x ∈ C : ϕ[x]E (fx) ∈ U} and {x ∈ X : ψ[x]E(fx) ∈ U}

have meager symmetric difference. As the former set is Baire measurable, so

too is the latter. It follows that the assignment x 7→ ψ[x]E is Baire measurable.

It only remains to show (3) ⇒ (1). Suppose, towards a contradiction, that

E admits a Baire measurable assignment of means, but E is not generically

smooth.

Lemma 5.2: There is an open set U ⊆ X such that E|U is generically non-

smooth.

Proof. Fix a countable open basis B for X . Now suppose, towards a contra-

diction, that for each U ∈ B, the equivalence relation E|U is not generically

non-smooth, and find non-meager Borel sets BU ⊆ U such that E|BU is smooth.

It follows that the restriction of E to the comeager Borel set

B =
[

U∈B

BU

is smooth, which contradicts the fact that E is not generically smooth.

Fix such an open set U ⊆ X . Next, we will need the following fact.

Lemma 5.3 (Woodin): Suppose that X is a Polish space and E is a countable

Borel equivalence relation on X . Then there is a dense Gδ set C ⊆ X such that

E|C is meager-preserving.

Proof. Fix a countable open basis B for X . By Feldman–Moore [3], there is a

countable group Γ of Borel automorphisms of X such that E = EX
Γ . For each

pair (γ, U) ∈ Γ×B for which it is possible, fix a Borel set B(γ,U) ⊆ U such that

B(γ,U) is comeager in U and γ−1(B(γ,U)) is meager.

Each of the maps γ−1(B(γ,U))
γ
−→ B(γ,U) witnesses that E is not meager-

preserving. We now remove these witnesses by restricting our attention to

a dense, Gδ set

C ⊆ X \
[
γ,U

γ−1(B(γ,U)).
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Suppose, towards a contradiction, that there is a meager Borel set A ⊆ C

such that [A]E|C is non-meager in C, and therefore non-meager in X . Set

Cγ = C ∩ γ−1(C), and note that

[A]E|C =
[
γ∈Γ

γ(A ∩ Cγ).

In particular, it follows that there exists γ ∈ Γ such that γ(A ∩ Cγ) is non-

meager, thus comeager in U , for some U ∈ B. Then B(γ,U) exists and B(γ,U) ∩

γ(A ∩ Cγ) is comeager in U , thus γ−1(B(γ,U)) ∩ A 6= ∅, which contradicts the

fact that A ⊆ C, and completes the proof of the lemma.

Now fix aGδ set C ⊆ U which is dense in U , such that the equivalence relation

F = E|C is meager-preserving. As F is generically non-smooth, it follows from

the results of §4 that the conclusion of Proposition 2.1 does not hold for the

generic 3-regular treeing of F . Thus, to draw out the desired contradiction, it

only remains to show the following:

Lemma 5.4: F admits a Baire measurable assignment of means.

Proof. By Feldman–Moore [3], there is a countable group Γ = {γn}n∈N of Borel

automorphisms such that E = EX
Γ . For each x ∈ [C]E , let

n(x) = min{n ∈ N : γn · x ∈ C},

and associate with each f : [x]F → [x]F the map f∗ : [x]E → [x]E given by

f∗(x) = f(γn(x) · x). Then ψ[x]F (f) = ϕ[x]E (f∗) defines a Baire measurable

assignment of means to the equivalence classes of F .

This ends the proof of the theorem.

We say that a set B ⊆ X is globally Baire measurable if for every Polish

space Y and Borel injection π : Y → X , the set π−1(B) is Baire measurable.

(This notion should be thought of as an analogue of universal measurability.)

Theorem 5.5: Suppose that X is a Polish space and E is a countable Borel

equivalence relation on X . Then the following are equivalent:

1. E is smooth.

2. E admits a Borel assignment of means.

3. E admits a globally Baire measurable assignment of means.
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Proof. To see (1) ⇒ (2), fix a Borel transversal B ⊆ X of E, and let s : X → X

be the Borel function which associates with each point x ∈ X the unique element

of B ∩ [x]E . The map which assigns to each equivalence class [x]E the mean

ϕ[x]E(f) = f ◦ s(x)

gives the desired result.

As (2) ⇒ (3) is obvious, only ¬(1) ⇒ ¬(3) remains. By the Glimm–Effros

dichotomy (see, for example, Harrington–Kechris–Louveau [4]), there is a con-

tinuous injection π : 2N → X such that

∀x, y ∈ 2N (xE0y ⇔ π(x)Eπ(y)),

where E0 is the equivalence relation on 2N given by

xE0y ⇔ ∃N ∈ N ∀n ≥ N (xn = yn).

Now suppose, towards a contradiction, that E admits a globally Baire measur-

able assignment of means. Setting B = π(2N), it follows, as in the proof of

Lemma 5.4, that E|B admits a globally Baire measurable assignment of means.

Pulling back through π, it then follows that E0 admits a Baire measurable as-

signment of means. As E0 is generically non-smooth, this contradicts Theorem

5.1.

Remark 5.6: Under CH, the existence of a universally measurable assignment

of means is equivalent to the µ-hyperfiniteness of E with respect to every Borel

probability measure on X (see Kechris [8]).

Recall that a set A ⊆ X is analytic, or Σ1

1
, if it is of the form

A = {x ∈ X : ∃y ∈ NN ((x, y) ∈ B)},

where B ⊆ X × NN is Borel. A set C ⊆ X is co-analytic, or Π1

1
, if it is the

complement of an analytic set. A set A ⊆ X is Σ1

n+1
if it is of the form

A = {x ∈ X : ∃y ∈ NN ((x, y) ∈ B)},

where B ⊆ X × NN is Π1

n
, and A ⊆ X is Π1

n+1
if it is the complement of a

Σ1

n+1
set. A set P ⊆ X is projective if it is Σ1

n
, for some n ∈ N.

One of the successes of modern descriptive set theory has been the resolution

of various classical questions about the projective hierarchy via determinacy
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axioms (which transcend ZFC). In particular, it follows from the axiom of Pro-

jective Determinacy (PD) that every projective subset of a Polish space is Baire

measurable. Theorem 5.5 therefore implies the following

Theorem 5.7 (PD): Suppose that X is a Polish space and E is a countable

Borel equivalence relation on X . Then the following are equivalent:

1. E is smooth.

2. E admits a projective assignment of means.

By employing still stronger set-theoretic hypotheses, we can show that there

are even weaker notions of measurability with respect to which only smooth

equivalence relations admit measurable assignments of means.

Along similar lines, Theorem 5.5 can be used to see that in certain models

of ZF + DC in which the axiom of choice fails, non-smooth equivalence rela-

tions cannot admit assignments of means whatsoever. Let BP abbreviate the

statement that every subset of a Polish space is Baire measurable.

Theorem 5.8 (ZF + DC + BP): Suppose that X is a Polish space and E is a

countable Borel equivalence relation on X . Then the following are equivalent:

1. E is smooth.

2. E admits an assignment of means.
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